

Master’s Degree in Computer Engineering

Security in Networked
Computing Systems’ notes

by Marco Micera

A.Y. 2016/2017
Available for free at notes.altervista.org

http://notes.altervista.org/

Ci
ph

er
s

H
as
h
fu
nc
tio

ns
M
AC

s
SS
L
w
/o
 M

AC
 k
ey

SS
L

IP
se
c

SS
H

D
Ss

W
ha

t i
s
se
nt

E(
e,
 m

)
H(
m
)

S(
a,
 m

)
E(
e,
 m

 ǁ
H
(m

))
E(
e,
 m

 ǁ
S(
a,
 m

))
E(
e,
 m

) ǁ
 S
(a
, E
(e
, m

))
E(
e,
 m

) ǁ
 S
(a
, m

)
S(
sk
, m

) =
 σ

Ki
nd

 o
f k

ey
s

Sy
m
m
et
ric

N
on

e
Sy
m
m
et
ric

Sy
m
m
et
ric

Bo
th

Bo
th

Bo
th

As
ym

m
et
ric

Co
nf
id
en

tia
lit
y
or
 S
ec
re
cy

Pr
ot
ec
ts
 d
at
a
fr
om

 e
av
es
dr
op

pe
rs

(s
po

of
in
g)
.

Ye
s

N
o

N
o

Ye
s

N
o
pl
ai
nt
ex
t (
m
) s
en

t o
ve
r t
he

ne

tw
or
k

Ye
s

Ye
s

Ye
s

N
o

Ev
er
yo
ne

 c
an

de

cr
yp
t t
he

m
es
sa
ge

 w
ith

 th
e

se
nd

er
's
pu

bl
ic
 k
ey

In
te
gr
ity

G
ua

ra
nt
ee

s
th
at
 n
o
ta
m
pe

rin
g
or

al
te
rn
at
io
ns
 o
cc
ou

r.

N
o

Ye
s

Ye
s

Ye
s

Ha
sh
 se

nt
 w
ith

 th
e
m
es
sa
ge

Ye
s

Ye
s

Ye
s

Ye
s

Au
th
en

tic
at
io
n

En
su
re
s t
ha

t o
nl
y
au

th
or
ize

d
se
nd

er
s

an
d
de

vi
ce
s e

nt
er
 th

e
ne

tw
or
k.

N
o

N
o

Ye
s

th
an

ks
 to

 th
e
pr
e‐

sh
ar
ed

 se
cr
et
 'a
' t
ha

t
ki
nd

a
ac
ts
 li
ke
 a
 "
ke
y

of
 a
n
ha

sh
 fu

nc
tio

n"

N
o

Ye
s

Ye
s

Ye
s

Ye
s

N
on

‐r
ep

ud
ia
bi
lit
y

Th
e
re
ci
pi
en

t c
an

 p
ro
ve
 th

at
 th

e
se
nd

er
 si
gn

ed
 m

 a
nd

 n
ot
 m

'.

N
o

Th
e
re
ce
iv
er
 c
an

fo
rg
e
th
e
m
es
sa
ge

.
U
se
d
in
 m

ut
ua

l‐t
ru
st

ap
pl
ic
at
io
ns
.

Ye
s

O
nl
y
th
e
se
nd

er

ca
n
pr
od

uc
e
its
 D
S.

Ca
n
be

 u
se
d
w
ith

no

 m
ut
ua

l‐t
ru
st
.

Ve
rif
ia
bi
lit
y

Th
e
re
ci
pi
en

tc
an

 v
er
ify

 a
nd

 p
ro
ve

th
at
 th

e
se
nd

er
, a
nd

 n
o
on

e
el
se
,

sig
ne

d
th
e
do

cu
m
en

t.

Ye
s

If
on

ly
 th

e
se
nd

er

kn
ow

s t
he

 p
re
‐

sh
ar
ed

 se
cr
et
 k
ey
 'a
'

Ye
s

N
on

‐fo
rg
ea

bi
lit
y

Th
e
se
nd

er
ca
n
pr
ov

e
th
at
 so

m
eo

ne

el
se
 h
as
 si
gn

ed
 a
 m

es
sa
ge
.

Ye
s

Pu
bl
ic
 v
er
ifi
ab

ili
ty

Ca
n
an

yo
ne

 v
er
ifi
fy
 th

e
sig

na
tu
re
?

N
o

O
nl
y
th
e
ke
y
ho

ld
er

ca
n
ve
rif
y
th
e

m
es
sa
ge

.

Ye
s

Tr
an

sf
er
ab

ili
ty

Ca
n
be

 tr
an

sf
er
re
d
be

tw
ee

n
us
er
s.

N
o

In
 a
 m

ul
tic

lie
nt
‐

se
rv
er
 a
pp

 w
he

re

ev
er
yo
ne

 sh
ar
e
th
e

sa
m
e
ke
y,
 a
 u
se
r c

an

cr
ea

te
 a
 n
ew

 M
AC

Ye
s

M
es
sa
ge
s
st
ru
ct
ur
e
ov
er
vi
ew

N
ot

es
 P

ag
e

1

A ciphertext-only attack is one where the adversary (or cryptanalyst) tries to deduce○

the decryption key or plaintext by only observing ciphertext. Any encryption scheme
vulnerable to this type of attack is considered to be completely insecure.

Ciphertext-only attack
The least strong.

1.

A known-plaintext attack is one where the adversary has a quantity of plaintext and○

corresponding ciphertext. This type of attack is typically only marginally more difficult to mount.

Known-plaintext attack
The adversary knows pairs of (p, c).
S/he can then perform brute-force attacks against the key based on those pairs.

2.

"Get": from a server, or by his/her self.○

A chosen-plaintext attack is one where the adversary chooses plaintext and is then given corresponding
ciphertext. Subsequently, the adversary uses any information deduced in order to recover plaintext corresponding
to previously unseen ciphertext.

○

Chosen-plaintext attack
The attacker can choose plaintexts and get corresponding ciphertext.

3.

An adaptive chosen-plaintext attack is a chosen-plaintext attack wherein the choice of plaintext may depend on
the ciphertext received from previous requests.

○

Adaptive chosen-plaintext attack
Not only the adversary can choose messages, but next ones depends on previous ones

4.

Types of attacks

Selective forgery
The adversary chooses the messages and then forges (creates) the tag.

1.

Existential forgery (weaker)2.
The adversary has no control over the message so the message m could be meaningless.

Example: in the CBC-MAC construction w/o the last encryption, m and m ǁ (m ⊕ t) produce
the same tag.

▪

Find , without knowing the key.○

Example: in HMAC, starting from a pair, the adversary can compute the

 pair, where is a block.

Proof is obvious just by looking at the Merkle-Damgard hash construction (it's just a
continuation of this scheme):

▪

Computing (message, tag) pairs, without knowing the key.○

Two types:

Forgery types

Attacks and counter-attacks
sabato 03 giugno 2017 14:58

 Notes Page 2

continuation of this scheme):

Confusion and diffusion

Subsets of bits get subsituted○

Both AES and DES use confusion○

Confusion: the relationship b/w key and CT is obscured•

Permutation○

Both AE and DES use confusion○

E.g.: by changing one plaintext bit, half of the ciphertext bits are usually changed.
The cipher's output has to look like a random variable.

○

Diffusion: the influence of one PT symbol is spread over many CT symbols with the goal of hiding
statistical properties of the PT

•

Shannon said that a cipher, in order to be secure, has to implement both of the following properties

When those two properties are concatenated, a product cipher is obtained.

 Notes Page 3

Confidentiality•

Definition•

 ○

 ○

A cipher defined over (K, P, C) is a pair of "efficient" algorithms (E, D) where:

 ○

such that the operations are invertible:

Security•
Given C and P, it is difficult to determine K, unless it is used just once.

Cipher

Kerchoff's principle: "A cryptosystem should be secure even if everything about the system, except the key, is public knowledge"○

 ▪

The a posteriori probability (given the fact that the adversary has read the ciphertext), is equal to the a priori probability (the second one).▪

Perfect secrecy by Shannon
A cipher (E, D) defined over (K, P, C) has perfect secrecy if

○

 (for each pair of messages having the same length)▪

where

Another definition
A cipher (E, D) defined over (K, P, C) has perfect secrecy if

○

Definitions•

 □

Selecting one message with , we start encrypting with all the possible keys.□

There exists at least one ciphertext which is not an image of

 □

 Shannon's equality does not hold cipher is not perfect contradiction□

Proof by contradiction▪

Shannon's theorem: In a perfect cipher, ○

Key bits are truly randomly choseni.
 (Shannon's theorem)ii.

Unconditional security necessary conditions○

Theorems•

 ▪

One-time, pre-shared□
Truly random chosen□
As long as the message□

 ▪

 ⊕ ▪

 ⊕ ▪

Definition○

Pros and cons○

Pros Cons

Perfect (unconditional security)•
Very fast enc/dec•
Only one key maps m into c•

Key as large as the message
(if I'm able to pre-share a t-bit key, I'm able to pre-share the message itself)

•

 ⊕ ⊕ •
 ⊕ ⊕ releases information due to ASCII redundancy•

One-time key: two-time pad has the following problem•

 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ○

The attacker should then also know the relative plaintext○

Malleable: perturbation on ciphertexts have predictable impact on decrypted plaintexts•
Know-plaintext attack breaks OTP: ⊕ •

OTP has perfect secrecy iff:▪

OTP perfect secrecy○

One Time Pad (OTP)•

Perfect secrecy

Symmetric encryption
mercoledì 01 marzo 2017 19:38

 Notes Page 4

 All messages have same length1)

 There are no impossible messages2)

 Key is random3)

OTP has perfect secrecy iff:▪

Proof target: (perfect secrecy theorem)□

Lemma: there's only one key that maps p into c, that is ⊕ ◊

Those events are 0independent:

◊

Numerator evaluation

Notice that for each pair there's only one ciphertext produced.◊

Denominator evaluation

By dividing them, the theorem has been proved.

Bayes' theorem to the first operand:

 □

Proof▪

 random variable on ▪

 indipendent uniform (truly random chosen) variable on ▪

 ⊕ is uniform on ▪

Proof with ▪

 □

Same thing for

 □

 ⊕

0 0 0

0 1 1

1 0 1

1 1 0

XOR property ○

Functioning: a shorter key k is a seed for a PRG that produces G(k):□

Shannon's theorem says that this is not perfect.□

There should be no efficient algorithm to distinguish a PRNG output from a TRG one.

So called Cryptographically-Secure PRGs (CSPRGs)

Encryption as secure as the PRG randomness.□

Pseudo-Random Generator (PRG)▪

Pratical OTP○

Microsoft's PPTP used two-time pad▪

Used to protect Wi-Fi network□

The IV was only on 24 bits so after 12K frames there was a collision probability higher than 50%.

Even worse if the IV was a counter: on a netcard reboot, the IV resets to 0.

Patch: different key for each frame.◊

All these inputs use the same key: RC4 (the used PRNG) was weak w/ related keys.

RC4 is now deprecated.

The PRG had as input.□

802.11b WEP (Wi-Fi)▪

CSS (DVD encryption)▪

Badly made real One Time Pads○

 Notes Page 5

Its problem consisted in the PRNG□
Used LFSRs (Linear Feedback Shift Registers)□

They are periodical after shift operations

Attacks are , predictable behaviour

Key generation in CSS□

Key length is 5B, so this process is repeated 5 times

Seed is also 5B, used to configure LFSRs like in figure

First 20B of an mpeg known

⊕

Run LFSR-17 and get its 20B output without the other 25-bit LFSR◊

(candidate)◊

Check if two registers togheter produce

◊

For every LFSR-17 initial state ()

How to break it□

Improvement: non-linear function instead of XOR□

CSS (DVD encryption)▪

Blocks encrypted separately○

Pros and cons○

Pros Cons

No block sync•
No error propagation•
Parallalizable•

Doesn't hide data pattern traffic analysis•
Allows ciphertext block re-ordering and substitution•

Replay attack○

Electronic codebook (ECB)•

Scheme○

In formulas▪

Encryption Decryption

 ⊕

 ⊕

Initialization vector (IV) is a nonce: it has to be changed every time○

Pros and cons○

Pros Cons

 depends on all previous •
ct-block reordering affects decryption•
IV can be sent in clear: must not be tampered•

Bit error in affects decryption of and •

 ⊕ •

 ⊕ •

Error propagation•

PKCS#5 padding○

Cipher Block Chaining (CBC)•

Encryption modes

 Notes Page 6

 •

So a perfect key length should be , but ▪

Number of permutations: ○

A key specifies a permutation○

A block cipher basically permutates all possible plaintexts to all possible ciphertexts•

Shannon's: perfect if it is able to produce all possible permutations•

Known-plaintext attack: pairs○

Attackers can build dictionaries○

Dictionary size:

 ○

Width: ▪

Height: ▪

… …

Why cipher blocks input size •

Given

 pairs of , a key can be recovered by brute-force in ○

DES challenge: known the entire ct and the first three pt blocks, determine the key□

In DES and AES, two pairs are enough○

Exhaustive key search theorem•

Fundamentals

Lengths

DES

3DES

AES

DES

Encrypts twice: ○

Given x (input) and y (output)▪

An attacker could store all possible (the meeting-point, on n bits, it's a cipher's output) in a sorted data structure.▪

Height: entries□
Width: bits□

Number of computation in order to build it: (#entries) + [sorting operations]□
The only advantage in respect to 1DES: very large and requires high number of computations□

… …

 , by decrypting the output y by means of all possible right-keys.▪

Requires computations□

Seach for in the table containing all ▪

Overall cost: same as 1DES▪

Meet-in-the-middle attack○

2DES•

Backward compability with 1DES if ▪

Encrypts-decrypts-encrypts: ○

It's a meet-in-the-middle attack in 2DES, plus the last block cipher.▪

Meet-in-the-middle attack requires computations, as if the key doubles○

3DES•

So permutations a performed out of the total possible ones: so DES isn't a perfect cipher.○

The key is divided into multiple smaller keys, used in different rounds (48 rounds in 3DES)○

 DES•

Based on the Feistel Network•

Block ciphers
venerdì 02 giugno 2017 15:26

 Notes Page 7

onenote:#Symmetric%20encryption§ion-id={9DF0808A-3B56-495D-A4E7-2BF8420A1752}&page-id={8B23A890-14AD-4209-B15B-29363495661A}&object-id={1430611D-0475-4152-97E5-57B157AACD7B}&97&base-path=https://d.docs.live.net/653d34e43499e34c/Documents/Security%20in%20networked%20computing%20systems/Notes.one

Decryption uses the same circuit, with function applied in reverse order.▪

DES actually uses

 ⊕
▪

 ⊕

 ⊕

 ⊕
○

The Luby-Rackoff '85 version uses always the same function, with different keys applied to it.○

These function are PRFs.

Expansion P-box□
Compression P-box□
Straight P-box□

P-box: permutation box (which by itself it's the straight one)▪

S-box: substitution box▪

Legenda:○

Scheme○

Complete scheme Round-key generation

The parity drop box drops parity bits included in the 64bit key: the effective DES
key length is 56bit.

Initial and final permutation Round function

This is only the right part: after the last permutation, the result has to be XORed with .

At each round, half data is encrypted.

Expansion P-box

DES is a 16 round Feistel net•

 Notes Page 8

Expansion P-box

S-boxes

Linear functions will make the entire DES linear○

Problem: ⊕ ⊕ ○

 •

Exhaustive search: key is only on 56 bits▪

Chosen-plaintext attack▪

Attacks○

AES

At each round, all data is ecrypted, therefore AES provides more security than DES even with less rounds. For this reason, AES also performs better.○

10, 12 or 14 rounds depending on the key size•

Based on Subs-Perms networks (encrypting/decrypting scheme)•

Encryption is performed○

Inversion = decryption○

Actual AES scheme•

AES is Byte-oriented▪

The input 128 bits long data block, is considered as a matrix of 4B by 4B○

(256 1B entries)□

Relation b/w key and ciphertext is obscured

Provides confusion□

Called S-box (substitution-box)□
Non-linear□
Obviously invertible, because the decryption is done by inverting this operation□

Byte substitution: implemented by a lookup table.1.

How is it done□
ShiftRows2.

Round operations○

 Notes Page 9

onenote:#Symmetric%20encryption§ion-id={9DF0808A-3B56-495D-A4E7-2BF8420A1752}&page-id={8B23A890-14AD-4209-B15B-29363495661A}&object-id={D39C583E-D181-4B0E-9796-BDA7DB391A23}&5C&base-path=https://d.docs.live.net/653d34e43499e34c/Documents/Security%20in%20networked%20computing%20systems/Notes.one

How is it done□

Provides diffusion□
MixColumns: linear transformations (matrix multiplication made with another matrix with certain coefficients).3.

Those operations are very simple, so they can be implemented via software.
To make it more performant, the first round can be implemented by a huge pre-computed lookup table that maps all different inputs to all different outputs.

▪

Javascript AES pre-computes it on client's browser upon receiving the AES library from a server.□

Round operations optimization○

In hardware: Intel has some instructions in its ISA to encrypt with AES○

Given pairs from four related keys, they can be recovered in .▪

Related key attack in AES-256○

Attacks•

 Notes Page 10

1 dealer•
n players•
The dealer gives a share of the secret to the players, but only when specific conditions are fulfilled
will the players be able to reconstruct the secret from their shares. The dealer accomplishes this
by giving each player a share in such a way that any group of t (for threshold) or more players can
together reconstruct the secret but no group of fewer than t players can.

•

t = 1•
t = 1 secret sharing is very trivial. The secret can simply be distributed to all n participants.

t = n•

Encode the secret as an arbitrary length binary number s.
Give to each player i (except one) a random number pi with the same length as s.
Give to the last player the result of (s XOR p1 XOR p2 XOR ... XOR pn-1).
The secret is the bitwise XOR of all the players' numbers (p).

a.

Additionally, (1) can be performed using any linear operator in any field. For example,
here's an alternative that is functionally equivalent to (1). Let's select 32-bit integers
with well-defined overflow semantics (i.e. the correct answer is preserved, modulo 2^
32). First, s can be divided into a vector of M 32-bit integers called vsecret. Then (n-1)
players are each given a vector of M random integers, player i receiving vi. The
remaining player is given vn=(vsecret - v1 - v2 - ... - vn-1). The secret vector can then be
recovered by summing across all the player's vectors.

b.

There are several (t, n) secret sharing schemes for t = n, when all shares are necessary to
recover the secret:

1 < t < n, and, more general, any desired subset of n•
The difficulty lies in creating schemes that are still secure, but do not require all n shares.
For example, imagine that the Board of Directors of a company would like to protect their
secret formula. The president of the company should be able to access the formula when
needed, but in an emergency any 3 of the 12 board members would be able to unlock the
secret formula together. This can be accomplished by a secret sharing scheme with t = 3
and n = 15, where 3 shares are given to the president, and 1 is given to each board
member.
When space efficiency is not a concern, trivial t = n schemes can be used to reveal a
secret to any desired subsets of the players simply by applying the scheme for each
subset. For example, to reveal a secret s to any two of the three players Alice, Bob and
Carol, create three different (2,2) secret shares for s, giving the three sets of two shares to
Alice and Bob, Alice and Carol, and Bob and Carol.

Trivial secret sharing

Secret sharing
venerdì 09 giugno 2017 15:52

 Notes Page 11

https://en.wikipedia.org/wiki/Binary_numeral_system
https://en.wikipedia.org/wiki/Field_(mathematics)

Integrity•

Compression○

Computationally easy○

Properties•

So m is the digest length○

n usually is the input length (could be any size)○

Definition: •

Hash functions•

m Preimage Collision

MD5 128

SHA-1 160

SHA-256 256

SHA-512 512

Security properties•

Breaking complexity One-way hash functions (OWHF)
or weak one-way hash function

Collision resistant hash functions (CRHF)
or strong one-way hash function

Preimage resistence1.
finding x given h(x)

Yes Almost always in practice

2nd-preimage resistance2.
given x, finding x' x such
that h(x) = h(x')

Black box attack complexity
O(2^m)

Yes Yes (implied)

Collision resistance3.
finding (x, x') such that
h(x) = h(x')

Birthday attack complexity
O(2^(m/2))

No Yes

Guessing attack○

Complexity

Which security property is attacked 2nd-preimage resistance2.
given x, finding x' x such that h(x) = h(x')

Algorithm
until h() = h(x)

repeat x ← random()

return x

Storage complexity Costant

Bithday attack○

Complexity

Which security property is attacked Collision resistance3.
finding (x, x') such that h(x) = h(x')

Birthday paradox theorem … … , indipendent and distributed integers•

When

 (collision probability)•

Algorithm Choose random input messages … 1.
For i = 1 to N, compute H()2.
Look for a collision. If not found, go to step 1.3.

Storage complexity

Black box attacks
The hash function H is considered as a black box which produces a m-bit long output considered as a random variable.

•

Integrity schemas with Collision Resistant Hash Functions (CRHFs)•

m ǁ E(e, H(m))

Hash functions
martedì 23 maggio 2017 11:28

 Notes Page 12

Sender has seen H(m)•
(as seen on the slides)
No confidentiality•
Message m sent in clear
The receiver cannot be sure that the m comes from the actual sender.
The attacker could have found a 2nd-preimage that passes the hash check.

•

m ǁ E(e, H(m))

H(m) can be used to check a guessed m•
E(e, m) ǁ H(m)

Confidentiality•
No plaintext (m) sent over the network
Integrity•
Hash sent with the message
As secure as E•
If E fails, everything fail

E(e, m ǁ H(m))

It is a CRHF for short message that is able to hash long messages too○

Scheme○

If h is collision resistance, then so is H.○

Key: IV or previous compression output▪

Reduces the size of SW libraries□
Reduces the size of HW circuits□

Pros▪

The compression function h can be a cipher○

The Merkle-Damgard iterated construction•

They're still useful when x is given, because MD5 and SHA-1 are 2nd-preimage resistance.○

MD5 and SHA-1 are not collision resistance•

 Notes Page 13

Authentication•

Stands for : "Message Authentication Code"•
Its output is called tag•

Compression○

Computationally easy○

Computation-resistance: it should be impossible to compute a tag without knowing the key.○

Properties•

Practical HMACs•

SSL

IPsec

SSH

Theorem:•

Problem: AES' input is 128 bit long. Excluding the key bits, this is a MAC for small messags.
To convert small-MACs into large ones, CBC-MAC and HMAC are used.

○

 (MAC generation function) is a secure PRF▪

 is negligible ▪

If:

Then F defines a secure MAC

Construction□

Existantial forgery w/o last encryption

CBC-MAC▪

From PRFs (Pseudo-Random Functions, like ciphers)○

How they're made•

MACs
martedì 23 maggio 2017 11:26

 Notes Page 14

 #messages CBC-MAC^′ ed with the same key◊

 input block size◊

After q messages, CBC-MAC becomes insecure with a probability of

 ◊

 ◊

Fixed

Maximum number of messages authenticated with CBC-MAC with the same key□

CMAC (Cipher-based MAC)▪

Suffers from the existential forgery attack.
Starting from a pair, the adversary can compute the

 pair, where is a block.

Proof is obvious just by looking at the Merkle-Damgard hash construction (it's just a
continuation of this scheme):

Insecure scheme□

This first hash ⊕ takes time because its input is large.◊

The second hash then takes less time.◊

 and : fixed and predefined◊

SHA-1 is not collision resistant, but HMAC only needs the compression
property

◊

 ⊕ ⊕

Standard□

Make string comparator always take same time.◊

Can be difficult to ensure due to optimizing compiler.◊

Defense #1

By HMAC-ing the tag, the receiver gets the message.◊

Instead of comparing it to the message itself, it compares it with the
message hashed two times

◊

Defense #2

Timing attack: some verifiers returned false as soon as the first computed tag byte was
different from the received one.

□

HMAC (Hash-based MAC)▪

From CRHFs (Collision Resistance Hash Functions)○

 Notes Page 15

message hashed two times

◊

pad(m) and pad(mǁ0) produce the same MAC▪

By zeros○

"100…00", scan from the right▪

Dummy block to avoid existential forgery▪

Standard padding (ISO)○

Padding•

 Notes Page 16

Symmetric shared key establishment•

Key management strategies•

Pairwise keys TTP (Trusted Third Party)

Pros Only one communication at the
time can be compromised

•
n keys•
Easy to add/remove entities•

High scalability•

Cons
 keys•
Hard to add/remove entities•

Poor scalability•
All communications can be compromised•

TTP single point of failure•

TTP always online•
TTP knows all keys•

Theorem:
 ○

Square-and-multiply algorithm:

▪

Discrete () exponentiation (square-and-multiply algorithm) takes at

most multiplications

▪

Discrete exponentiation: given g, p and x, it's easy to compute ○

Discrete () logarithms takes at most operations (way more

harder)

▪

Discrete logarithm: given g, y and p , it's difficult to find x s.t.

○

Math•

Sharing keys w/o a TTP○

Scheme○

p and g (can be standard quantities or exchanged between A and B)□
 and (eavesdropped)□

What the adversary sees▪

In order for the adversary to compute , s/he has to discover at least
a or b.

▪

Secure against eavesdropping (DH problem = discrete logarithm problem) (passive
adversary)

○

Diffie-Hellman•

Diffie-Hellman
martedì 23 maggio 2017 11:17

 Notes Page 17

https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_problem

This is the discrete logarithm problem for a or b. Recall: operations.□

a or b.

g is public and known, so the adversary can send to the other party▪

 □

 □

At the end of the attack, A and B won't have equal keys▪

Problem: can be thought as A's public key, so there's nothing that links with A
certificates.

▪

Insicure against a MITM (active adversary)○

Session or Ephemeral keys•

 Notes Page 18

G: key generation, produces ○

E: encryption (with destination's public key)○

D: decryption (with personal private key)○

Consists in a triple of algorithms•

Adversary intercepts a ct○

Adversary selects a pt ○

Adversary computes . If ○

Not perfect for Shannon•

If the sender sends its name and public key at first, the MITM can change the latter.○

A trusted public key repository is not enough: an adversary can perform a MITM attack between someone
who's asking for a key and the TTP repository.

○

A TTP (Certification Authority) certifies the public key of each entity.□
Certificate: □

A user, in order to get Bob's public key, has to decrypt the last part of his certificate with the CA's
public key.

Key distribution with public keys▪

That's why there exists:

Insicure against a MITM•

Comparison among crypto-systems•

Ellyptic curves Diffie-Hellman RSA

Private key operations Faster Slower Slower

Public key operations Slower Slower Faster if e is small

Public key encryption
domenica 04 giugno 2017 17:35

 Notes Page 19

Generates pairs•

Provides an encryption and decryption scheme○

Digital signatures○

Consists in two algorithms•

Strictly related to the factoring problem•

 ○

Because ▪

 ○

Lengths•

Algorithm○

Generate two large, distinct primes p and q (100÷200 digits)1.

Compute and 2.

e existsi)

Select a random number (public key) such that 3.

There is an integer k s.t. i)
Can be done efficiently by means of the Extended Euclidean Algorithm (EEA) in a
logarithmic time

ii)

Compute the unique integer (private key) such that 4.

e: encryption key□
n: maximum message numerical value□

Public key: (n, e)▪

d: decryption key□
n: maximum message numerical value□

Private key: (n, d)▪

Generated keys:5.

[Destroy p and q]6.
(Cannot be done if decryption needs optimization on low performance devices: see 1 and 2)

Algorithm▪

On average odd numbers must be tested before a prime can be found▪

In a interval there exist prime numbers on average.□

□

Proof:

Primality tests do not try to factor the tested number▪

How to find large prime numbers (for p and q)○

Key generation algorithm with large prime numbers•

Grade-school algorithm requires multiplications▪

How efficient can the exponentiation operation can be done○

Encryption: , once m has been represented as an integer belonging to the interval

•

RSA
lunedì 05 giugno 2017 10:11

 Notes Page 20

If d is large as n, this algorithm is inefficient□
Grade-school algorithm requires multiplications▪

 requires at most multiplications and squares.
In this case, is the number of bits of the exponent e.

□

Algorithm:

c = 1; // final result
for(i = k-1; i >= 0; i--) { // starting from the MSB
 c = mod n; // the exponentiation is made before the
 // multuplication. At first, 1^2 is computed.
 // requires k squares
 if(== 1) // otherwise it's 0, then m^0 = 1
 c = (c * m) mod n; // starting from the left, all
 // multiplications are performed, only
 // when so won't be 1.
 // as many multiplications as the
 // number of (at most k).
}
return c;

Up to multiplications. Every multiplication requires , so the total

computational cost is

So , are bits, zeros or ones.
All the following numbers (m and the entire exponent) are expressed in base 10:

Square-and-multiply algorithm requires up to 2k multiplications (
): since a multiplication of two k-bits numbers can be done in , the whole

exponentiation operation can be done in .

The next point will explain why:

▪

Could be random (by definition)▪

Public (belongs to the public key)▪

Co-prime with (such that).▪

The number of square-and-multiply modular multiplications is equal to the number of
1s in e, so particular values of e containing a small number of 1s require a smaller
number of modular multiplications in the algorithm (the number of squares cannot be

▪

How to select e○

 Notes Page 21

number of modular multiplications in the algorithm (the number of squares cannot be
reduced).

Why is never used due to the low exponent attack□

If the LSB is equal to 1, it means that e = 1, hence, no encryption is
provided.

In all the other cases, the LSB is set to zero, so e is even and it cannot be
co-prime with .

Why one "1-bit" isn't enough: □

e Binary representation # modular multiplications

3 11 2

17 1 0001 5

2^16 + 1 1 0000 0000 0000 0001 17

Must satisfy Diffie-Hellman▪

The number of 1s cannot be pre-set, otherwise the key spice would reduce
itself.

□

It should be sufficiently large, as close as n as possible.□

In order to discourage brute-force attacks:▪

How to select d○

Decryption:

•

Recovering plaintext m from ciphertext c, given the public key (n, e)○

As long as this problem is hard, RSA is hard○

By "factoring n", the adversary finds out p, q, and so ,

 and finally d thanks to , like in the

key generation algorithm.

Exploits the property: RSAP is not harder than
FACTORING: if the attacker is able to factorize n, then s/he is able to solve
the RSAP.

It is equivalent to factoring n.□

Knowing is computationally equivalent to factoring n.□

If p and q are known s.t.

If is given (also n is known, it's part of the public key):

Proof:

Computing the decryption exponent d from the public key (n, e) to decrypt with

▪

Computing it is computationally easy iff n is prime□
If n is composite this computation is equivalent to factoring□

e-th root of ▪

Methods○

p and q should be large and about the same bitlenght in order to make factoring
computationally infeasible (to avoid the elliptic curve factoring)

○

Security: the RSA Problem (RSAP)•

Low exponent attack○

Drawbacks/attacks and solutions•

 Notes Page 22

Solution: make the message artificially longer (it's called "salting the message") by
choosing a random quantity r and then sending c =

▪

If the message space is small, the adversary can decrypt and create new messages.
This can happen with bits or, in general, with a limited set of numbers (auctions, for
example): the adversary can discover Alice's bid by crypting all possible numbers with her
cipher and confronting them with the actual ciphertext that Alice sent (her bid).

○

The adversary has a ciphertext ▪

By selecting a number s such that gcd(s, n) = 1, the adversary can compute

▪

The receiving side decrypts:

 ▪

Malleability: RSA satisfies the Homorphy property:

 .
This property can cause messages alteration (malleability) because an adversary can
introduce a controlled modification of the plaintext as follows:

○

Solution: it consists in introducing redundancy, by duplicating the message as follows:▪

 .
If the adversary performs the same tricks, after decryption, the receiving side gets
 : the receiver can then search for repeated bits: it's very unlikely that
the adversary finds such an s that can produce a perfectly duplicated bit flow at the
receiving side. There's no limit in redundancy.

This can be a problem when x represents a number, for example.

In both cases, message tags (HMACs) can be useful for redundancy, plus, the salting could also
consist in a random bit configuration.
The PKCS#1 padding standard tells how to do this in order to avoid those kind of attacks.

 Notes Page 23

Based on the Discrete Logarithm Problem (DLP)•

Select k randomly○

Where g is the generator (shared secret)▪

y is the public key▪

Send:

○

Encryption:•

 by definition▪

○

○

Decryption:•

k is random

are random.a.

An adversary needs

to decrypt.b.

The task of calculating

from is equivalent to the Diffie-Hellman Problem

(DHP), and thus based on the Discrete Logarithm Problem (DLP) in .

c.

k must be different everytime, otherwise the key can be found.d.

Security•

ElGamal
lunedì 05 giugno 2017 10:11

 Notes Page 24

Q is the public key▪

k is the private key▪

G is the generator▪

There's no easy way to find k that solves (multiplication is redefined) on curves,
where:

○

ECC parameters consists in the parameters of the elliptic curve (

).○

Based on the Elliptic Curve Discrete Logarithm Problem (ECDLP).•

Both Diffie-Hellman and ECC are defined on an additive Abelian groups, so Diffie-Hellman
can be redifined on this particular group, where the exponentiations are sobsituted with
the operations (ECDH).
This is possible because all the numbers smaller than p, with all the possible operations,
form an additive Abelian group.

○

Also ElGamal has been redifined on elliptic curvers, and it is called ECDSA.○

Re-definitions•

Pros and cons•

Pro Con

Keys are smaller than RSA ones (by providing the
same amount of security)

• If certain curves are selected, the ECDLP
becomes easy to solve.

•

Ellyptic curve cryptography
lunedì 05 giugno 2017 10:12

 Notes Page 25

https://en.wikipedia.org/wiki/Abelian_group

Strong magnetic fields attacks○

Physical alteration○

A side channel attack is based on information gained from the physical implementation of a cryptosystem•

Has physical access to the device○

Knows the used algorithm: the only secret is the key○

The adversary•

Exponents with a small number of 1s□

Compute and
In the original RSA, p and q had to be deleted at the end of the key generation algorithm:
in order to apply this optimization, p and q cannot be deleted at the end of the key
generation algorithm.

a)

Compute

and

In order to calculate and , two exponentials have to be computed.

b)

Before: , previously k ◊

Now:

 (because)◊

One exponential operation requires computations (on average, I guess): now the
exponent is on the number of bits of p and q, that have half number of bits of n.

So in this case 2 exponentiations on bits are needed.

In total, the number of multiplications remains the same:

multiplications.
What is changed here is the operation complexity: instead of , here we have

 .

Summary

 requires multiplications on t bits, that have a complexity of .

With the CFT, still multiplications are required, but the complexity drops down to
 (because those multiplications involve a smaller number of bits), with a
performance speed-up of 4 (4 times quicker).

Conclusion
Also low performance devices such as smartcards can compute RSA decryption.
Compute

 and can be pre-computed: another reason why p and q cannot be deleted at the

end of the key generation algorithm.

c)

Prime exponents
Based on the Chinese Reminder Theroem (CRT):

□

Decryption optimizations are needed for low performance devices:▪

The adversary can make at least one of the two computations of m fail.
This can be done by putting the smartcard under a strong magnetic field.

▪

 □

 □

For example, the adversary can change to , thus, m changes into m'.

If the computation is run twice, both m and m' can be computed.

The highlited terms cancel each other, so , so the difference

Fault injection
RSA requires several exponentiations (thousands of multiplications on 1024 bits: each exponentiation
requires about 1500 multiplications).

○

Three types:•

12.side_cha
nnels_att...

Side channel attacks
martedì 23 maggio 2017 11:15

 Notes Page 26

https://en.wikipedia.org/wiki/Chinese_remainder_theorem

 □

The highlited terms cancel each other, so , so the difference

is a multiple of q.
Also another quantity is a multiple of q, which is .
So q becomes the gratest common denominator between n and :

Computing it is computationally easy (with the EEA algorithm).
In this way, if the adversary can compromise the RSA key generation algorithm with a side channel
attack, s/he can compute q quite easily.
Note that in this case, the implemetation is attacked, not the algorithm.

Simple power analysis (SPA)○

Consists in analysing the power consumption of the cryptographic hardware device: in this way, the attacker
does not need any phyisical interaction with the device.
For example, in RSA, more power is needed during multiplications operations (when the key bit is 1) than
the no multiplication period (key bit is 0).

For example the timing attack against HMAC, as already shown during previous classes.▪

Time analysis○

 Notes Page 27

Difference between PKE and DS

Public Key Encryption Digital Signatures

The sender encrypts the message with the destination's
public key.

•

Only the destination can read the message, because its
private key it's needed to decrypt it.

•

Mainly used for data confidentiality (secrecy).•

The sender encrypts the message with its
own private key.

•

The receiver can be sure that the message
is generated by the receiver, because it's
decryptable with its public key.

•

Mainly used for authentication.•

Difference between hash, MAC and DS

Hash A (unkeyed) hash of the message, if appended to the message itself, only protects
against accidental changes to the message (or the hash itself), as an attacker who
modifies the message can simply calculate a new hash and use it instead of the
original one. So this only gives integrity.

Mac
Authentication
Code

A MAC protects against message forgery by anyone who doesn't know the secret key
(shared by sender and receiver).
This means that the receiver can forge any message – thus we have both integrity and
authentication (as long as the receiver doesn't have a split personality), but not
nonrepudiation.

Inability to provoide non repudiation: MACs cannot provide a proof that a message was indeed
sent by the sender.
Though no third party can compute the MAC, still sender could deny having sent the message and
claim that the receiver forged it, as it is impossible to determine which of the two parties
computed the MAC.

•

Also an attacker could replay earlier messages authenticated with the same key, so a
protocol should take measures against this.

Digital
Signature

A (digital) signature is created with a private key, and verified with the corresponding
public key of an asymmetric key-pair.
Only the holder of the private key can create this signature, and normally anyone
knowing the public key can verify it.
Digital signatures don't prevent the replay attack mentioned previously.
So this provides all of integrity, authentication, and non-repudiation.

Integrity○

Authentication○

Non repudiation○

Verifiability○

Transferabilty: consequence of the previous property (verifiability). A DS can be transferred
b/w users.

○

What they provide•

G: key generation algorithm○

 is the signature▪

S: signature generation algorithm○

V: signature verification algorithm○

Scheme•

Same key generation algorithm as PKE
Plain RSA signature scheme•

Digital signatures
martedì 23 maggio 2017 11:14

 Notes Page 28

Same key generation algorithm as PKE○

Signing:

○

Verification: ○

Knows the public key (n, e) of someonea)
Choses b)
Computes c)
 is random and may have no application meaning: for this reason the
forgery is existantial.
Outputs d)

The adversary:□

 proof is based on the Fermat's theory: this has been

skipped by the lecturer.

◊

 a)

The receiver, in order to verify the message, performs:□

An attacker could sign (meaningless) messages on behalf of a user.

In this way, the attacker is able to forge a digital signature.□

Suffers from existantial forgery▪

 is a valid signature for

Proof: decryption is

□
Malleability▪

Why plain RSA digital signature cannot be used (RSA with padding has to be used).○

Only RSA has this property: Elgamal doesn't.□
RSA can be used for both for [public key] encryption and digital signature.▪

 : public key

 : private key

Alice:□

 : public key

 : private key

Bob:□

Let▪

Digital signature:

□

Ciphertext:
□

So if Alice wants to send a crypted and authentic message, she has to send:▪

So Alice encrypts the message with Bob's public key and signs it with her own private key.

From https://sites.math.washington.edu/~morrow/336_09/papers/Yevgeny.pdf
Reblocking means having to break a signed message up into smaller blocks,
since the signature may be greater than the encryption (both are different, since
they are from different keys from two or more distinct users). The authors of
RSA, however, have provided a way to avoid reblocking a message: choose a
threshold value h (say h = 10^202 − 33) for the public-key cryptosystem, and
assure that “every user maintains two public (e, n) pairs, one for enciphering
and one for signature verification, where every signature n is less than h, and
every enciphering n is greater than h”. Thus, message blocking only depends on
the transmitter’s signature n."

□

 by definition (result of the digital signature creation

)□

 is necessary to perform the digital signature encryption.□

, for this reason , otherwise

 is necessary to be able to encrypt.□

What the re-blocking problem says: ▪

Re-blocking problem (slide 23 PDF 6.0)○

 Notes Page 29

https://sites.math.washington.edu/~morrow/336_09/papers/Yevgeny.pdf

 ◊

 ◊

, for this reason , otherwise

the digital signature could be greater than .
This is the "re-blocking problem", in other words, the authors of RSA want
to avoid re-blocking the digital signature before encrypting it

This is not practical because exponentiation is a computationally hard operation.▪

The main reason hash function are used in digital signature is for
performance.

Properties recall◊

Preimage resistence1.
finding x given h(x)

2nd-preimage resistance2.
given x, finding x' != x such that h(x) = h(x')

Collision resistance3.
finding (x, x') such that h(x) = h(x')

Let: and

Selects , that is a guess digital signature of
a message digest

If h() is not preimage resistance, given
 , it's possible to find x s.t.

Computes (verification function, it
outputs the message digest itself)

Can claim that z is the digital signature of x.

Sends (x is a guessed message
("existential"), z is its digsig)

The adversary:

If the preimage resistance property is not guaranteed,
existential forgery is possible.

Alice and Bob want to sign x emitted by a TTP.

Both of them sign the message with their own private
key.

If h() is not 2nd-preimage resistance, Alice may find x' !=
x s.t. h(x) = h(x'), so Alice can repudiate x.

If the 2nd-preimage resistance property is not guaranteed,
repudiation is possible.

Alice wants to sign x, received from Bob.

If h() is not collision resistant, Bob can generate (x, x')
such that h(x) = h(x').

If the collision resistance property is not guaranteed, frauds
can happen.

Properties faults examples◊

Hash function properties can then influence digital signature properties.

Digital signature with hash functions□
Usually, to avoid this, only the message digest is signed.▪

Could be applied to messages of any length, by applying a sort of ECB to the message, by
dividing a message into blocks and signing all different blocks indipendently.

○

 Notes Page 30

onenote:#Overall%20summary§ion-id={9DF0808A-3B56-495D-A4E7-2BF8420A1752}&page-id={8B23A890-14AD-4209-B15B-29363495661A}&object-id={959F7CA7-49E0-4EA8-AD49-050C09C7D804}&F7&base-path=https://d.docs.live.net/653d34e43499e34c/Documents/Security%20in%20networked%20computing%20systems/Summary.one

such that h(x) = h(x').
Bob in this way can pretend that Alice signed x' instead
of x.

Two different algorithms for encryption and decryption○

Not used anymore○

Uses smaller keys in comparison with Diffie-Hellman or RSA.▪

Elliptic Curve DSA (ECDSA)○

Elgamal signature scheme (DSA)•

Prevent direct access to the private key
An user receives a smartcard that contains (generates) the private key.
The only thing that the user can do is to claim that s/he has lost the smart card.
Losing the smart card is noticeable, meanwhile, the private key (for instance in a
file) could be modified, read and sent away, and the user could not know it.

□

Trusted timestamping service□

Can also assure that s is valid.

Can certify the existance of a message (patents).

Trusted Notary Service (TNS)◊

This requries a trusted third party.

This is sometimes implemented by CAs.

Solutions▪

Repudiation with digital signatures can be made if someone admits that its own private key
has been compromised.

○

Bad users repudiability attempts•

 Notes Page 31

Basic key transport protocol is insecure against MITM attacks, because there's no link
between users and public keys.

○

How public keys can be distributed and revoked•

 : identifier (username)▪

 : public key▪

Very often, this is specified by the law.□
If key couples are used outside this time interval (expired), signatures have no
legal value, even though they continue to have a "technical value".

□

Technical reasons: it avoids giving too much crypted material to crypto-
analists.

Administrative reason: encharged people have their job for a limited time.

What is it for:□

The owner (for example when a user finds out that his/her own key
has been compromised)

◊

The CA◊

Who has the right of doing it?

Revocation must be as quick as possible
There shouldn't be a period of time during which the key is used: users
can be offline, and so it can be hard to inform them immediately.

The CA puts revoked keys into this list (which is public)◊

The list is signed by the CA◊

It is periodically published by the CA (with a timestamp)◊

Certificate Revocation List (CRL)

When a still valid key cannot be used anymore (after firing someone, etc.) it
must be revoked.
Revoking keys is difficult:

□

 : validity period▪

 : ditigal signature that links together the previous three fields.
 it's also ok.

▪

What does it contain○

Certificate-base Diffie-Hellman Protocol○

 is Alice's public key, and it's generated with DH (

).▪

Generation

Certificate•

Public key infrastructure
martedì 23 maggio 2017 11:11

 Notes Page 32

With user-provided keys▪

Typically the public and private key couple is given by hand (e.g. bank
accounts).

The user sends his/her keys, that can be auto-generated.□

This channel has to be secure because the user also has to send his/her private
key, in order for the CA to check that too.

□

Challenge-response protocol (CRP):□

If the challenge is not random, a replay attack can be performed.

The challenge-response protocol can be implemented also with a cipher.

No requirements about this channel, because the certificate does not
contain any secret information.

With CA-generated keys▪

The second channel has to be secure because the private key has to be sent.□
Typically the private key shouldn't be given to the user (see the reasons above),
so that can be given with a smart card.

□

Generation○

Verification○

 Notes Page 33

For example, CRLs are published once a day: Bob, in the worst case, can
discover that Alice's key has been revoked after an entire day.

During the 90's, browsers didn't implement this because the CRL was a
few MBs long.
For this reason, not even CAs implemented this.

At this point, Bob has to download the proper CRL and check this.□

Problem description
Given a couple of keys used for encryption (or to establish a secret key).
The private key is usually in a smart card: if this one gets broken, the private key is
gone, and so all the private encrypted data.
For this reason a private key should be backuped.

▪

Not the user, cannot be able to do it.□
Not the government, that could be able to read all the encrypted data.□
The company that gives the smart card has all the rights to manage the
encrypted data.

□

Who can do it▪

When a certificate expires, the private key should be deleted (because no one
should be able to use it anymore).

□

By making a backup of a private key, a user can repudiate digitally signed
messages by saying that the message was signed after the certificate expiration
date.

□

All bank users (or softwares like operating system) have to install their public
key into all devices (smart cards or operating systems).
If this get lost, …

□

This backup can allow a user to read encrypted data even after the certificate expires.▪

Private key backup○

A message is encrypted using a public key▪

The corresponding private key is split into n shares▪

At least t (threshold) shares are necessary to reconstruct the secret▪

The system tolerates the compromisation of t-n nodes▪

Threshold crypto○

Key lifetime, backup and recovery: practical problems•

CA's obbligations•

 Notes Page 34

https://en.wikipedia.org/wiki/Threshold_cryptosystem

Released at registration time (banks)○

In newspapers. They publish hashes of their certificates.○

This is insicure: a trojan can install a certificate, that just consists in a simple file in a
browser's directory.

▪

Embed it in a browser installation package.○

How to distribute CA's certificates•

Bob receives a certificate about Alice's public key.
This certificate has been signed by some CAs.

○

If Bob trusts the CA's public key, he can then trusts Alice's one.○

Trust delegation•

Versioni.
Serial numberii.
Signature algorithm identifieriii.
Issuer distinguished nameiv.
Validity intervalv.
Subject distinguished namevi.
Subject public key informationvii.
The following two fields are needed to avoid ambuigity when the subject and the
issuer have the same name:
Issuer unique identifies (v=2,3)viii.
Subject unique identifier (v=2,3)ix.
Extensions (v=3)x.
Signaturexi.

Data structure○

Hierarchical names○

CN: common name▪

OU: organization unit▪

O: organization▪

Certificate example

X.509 standard•

 Notes Page 35

Certificate example○

This is the CA▪

Certificates have their own version (depending on the validity period)▪

The fingerprint is the hash of the certificate▪

This is n▪

This is e▪

The private key used to sign this certificate cannot be used to sign other
certificates

□

If i receive a certificate signed by CA's private key, with the FALSE value I can
assure that the digital signature is not valid because the server mps.it has not
respected all the constraints.

□

Basic constraint CA: identifies if the subject of certificates is a CA who is allowed to
issue child certificates.

▪

In CRLs there are no entire certificates in it for privacy reasons: if certificates get □

CRL Distribuition Points: gives the address of the CRL.
It cannot be modified because it is protected with the digital signature in the
certificate.

▪

 Notes Page 36

In CRLs there are no entire certificates in it for privacy reasons: if certificates get
published, also names are published (and so, information about company
employees and companies).
It just contains a serial number.

□

Problem○

(Hierarchical) Centralized trust model○

So every has to trust the root CA.□
Also all the rules are stated by the root CA.□

A user, in order to check another user's certificate, has to trust the root CA.
Once a user trusts the root CA, it can then verifiy all the other CAs contained in the
chain.

▪

This is why their cards can be used all around the world.□
This is used by MasterCard: all their smartcards contain the root CA's certificate.▪

Constraint on the chain length□
Constraint on the set of domains (width of CA's tree)□

Constraints about this structure▪

Those constraints are specified in the standard.
The root CA certificates itself.
X.509 example:

▪

Multiple CAs•

 Notes Page 37

This time, Basic Constraints CA is set to TRUE.□
Also note that pathlen is zero.□
Certification Pratice Statement (CPS): document, defined by the root CA, that
describes how all the certification method is implemented.
The CA has to implement the CPS.

□

Companies do not want to trust a root CA, and they don't want their CA to be placed
in the second-level.

▪

Structure▪

X and Y have to certify themselves.□

Cross-certification○

More than one company can co-operate between themselves.
Every root CA has to make a deal with any other root CA.

▪

No hierarchy▪

Enterprise model○

A few company root CAs choose another root CA.▪

Hub-and-spoke model○

In this way, all users that downloads it can trust those CAs.□
The number of existing CAs is around 650, but just around 75 are installed in
browser boundles.

□

CAs are already installed in the browser boundle.▪

Browser model○

Mainly because CAs try to minimize security features in order to earn more
(DigiNotar)

□

When CA companies trust some given certificate, the adversary who gave the
certificate to the CA can intercept an HTTPS or SSL connection and act like the
desired server (Iranian attack) (servers can do this with proxies that generates
certificates on-the-fly, signed with a trusted CA already installed in the browser
boundle).

□

Compromization▪

All those cases are MITM attacks.○

CA incidents•

 Notes Page 38

This can be used to decrypt secret messages and to poison DNS servers.

boundle).

This happens when CAs sells certificates to another intermediate CA and give
them the possibility to sign as they were the initial CA, that can perform MITM
attacks.

□
Misconfiguration (Turktrust)▪

Chrome carries with itself a list of known-good certificates (and a list of
presumed-good CAs), that are used as a "standard model" for each common
server.

□

When the user surfs the web and gets a certificate, thanks to the public key
pinning, Chrome can check if the received certificate matches all the rules
contained in the pre-installed list of certificates.

□

Public key pinning▪

Normally, when CAs give a certificate, they don't reveal this fact (for business
reasons).

□

The ct countermeasurement proposes to release certificates in a public
database. CAs do not want to do this.

□

Certificate transparency▪

Download a certification directly and from a set of trusted CAs and compare
them (for instance).

□
Convergence▪

It consists in storing public keys in a DNS record.□
DANE (DNS-based Authentication of Name Entities)▪

Prove the legal entity controlling the website or software package…□
…promise what we were promised a decade ago and we never got.□

Extended validation certificates▪

Offline

CRL (Certificate Revocation List)□

Online

Lighter in respect to CRL◊

Pros

The protocol is totally in the clear, so everyone sniffing can know
what certificates are requested.

◊

Exposed to replay attack.◊

Most of browsers ignore OCSP timeouts and establish the
connection as well: a MITM attack can be then perfomed.
So OCSP can be useful just for update/patche releases.

◊

Cons

OCSP (Online Certificate Status Protocol)□

Revocation options▪

Configure browsers in order to exploit certificates▪

Solutions○

Not always they connect to the CRL/OCSP to check if the certificate is revocated or
not. This is because this "blocks the browser experience".

▪

This is encouraged when the revoction infrastructure is unreachable.▪

DV and OV: browsers do not check if those kind of certificates have been
revoked.

□

Extended Verification (DV): the browser tries to connect to the revocation
infrastructure, but for whatever reason it's not available, they just ignore that.

□

Different types of server certificates are then created (this changes the colour of the
certificate next to the browser URL):

▪

What browsers do in reality○

It provides confidentiality and integrity for emails.
Pretty Good Privacy (PGP)•

 Notes Page 39

It provides confidentiality and integrity for emails.○

It uses the Trust model○

All the decisions are made by Alice, and not by a root CA.▪

Complete trust□
Marginal trust□
No trust□

Alice can have different shades of trustness:▪

A completely trusted key□
By two marginally trusted keys□

A key is valid if it has been signed by:▪

Reasoning (pretty obvious):▪

Points that can be attacked (in red):
The customer's computer is the weakest part of the system:

▪

Non-repudiation is fundamental.○

System considerations on digital signatures for e-commerce•

 Notes Page 40

The attacker can display something else to Alice1.
Another command can be given in the back side2.
Another command can be given in the fron end3.
The malicious software can intercept the PIN and can use it to make stuff.4.
The malicious software can try to discover the key K (and it's easy because
it depends on the PIN)

5.

Points where a smart card can be attacked:▪

The adversary could still steal the user's smart card.□

A smart card can be integrated in a CPU (like in the ARM processors, they have
secure dedicated processors).
This can be done in order to prevent some malicious intrusion between the
normal CPU and the secure one, by making the communication between those
two parts in hardware. The software run by the secure CPU is considered more
secure because this one in unaccessable, nothing can be installed on it and
everything is tested.

□

 Notes Page 41

Authentication•
Secrecy•
Integrity•

Transport layer (above TCP)•

They are almost equal○

The only thing that changes is the implementation (hashing functions, etc.)○

They cannot inter-operate b/w themselves○

SSL vs TLS•

A session holds more than one connection○

Session ID▪

Peer certificate▪

Compression method▪

Cipher spec▪

Pre-master secret (48 Bytes)▪

State○

After the pre-master secret establishment (computationally heavy, made with PKE), the
session is formed.

○

A session has a certain lifetime.▪

This pre-master secret (PMS) lasts all session long (like other secrecy options).
In this way, this expensive negotiation is made just once.

○

Both sides create several keys from the PMS used in all subsequent connections.○

One key for each direction○

Session•

Change cipher protocol○

Whenever the client or the server notice something strange.▪

Can be "fatal", that will end up the session.▪

Alert protocol○

Mutual authentication□

Key establishment

Encryption scheme

MAC

Cipher suite negotiation□

Both parties establish a pre-master secret (PMS)□

Establishes a secure session▪

Basic scheme (from Wikipedia)▪

Handshake protocol○

Composed on 4 protocols•

SSL
martedì 23 maggio 2017 11:10

 Notes Page 42

https://en.wikipedia.org/wiki/Transport_Layer_Security

client_hello: The client requests a secure connection and presents a list of
supported cipher suites (ciphers and hash functions).

□

server_hello: From this list, the server picks a cipher and hash function that it also
supports and notifies the client of the decision.

□

certificate: The server also sends its certificate.□
The client confirms the validity of the certificate before proceeding.□

The PMS belongs to the session◊

A new session key is computed (from the PMS) for each connection in
the following way

◊

encrypts a 48B random number (the pre-master secret PMS) with the server's
public key and sends the result to the server (which only the server should be
able to decrypt with its private key); both parties then use the random number
(PMS) to generate a unique session key for subsequent encryption and
decryption of data during the session

uses Diffie-Hellman key exchange to securely generate a random and unique
session key for encryption and decryption that has the additional property of
forward secrecy: if the server's private key is disclosed in future, it cannot be
used to decrypt the current session, even if the session is intercepted and
recorded by a third party.

To generate the session keys used for the secure connection, the client either:□

The server can send a certificate_request to the client.

certificate◊

Certification confirmation: hash of some known data

certificate_verify◊

The client is then required to send:

Optional client authentication□
Athentication▪

 Notes Page 43

https://en.wikipedia.org/wiki/Cipher_suite
https://en.wikipedia.org/wiki/Encryption
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Digital_certificate
https://en.wikipedia.org/wiki/Random_number_generation
https://en.wikipedia.org/wiki/Diffie-Hellman_key_exchange
https://en.wikipedia.org/wiki/Session_key

Certification confirmation: hash of some known data
(certificates, nonces and the PMS), encrypted with his/her
private key.

The client can trust the server because it can have its certificate.

Confidentiality: cipher◊

Authentication: MAC◊

The channel is secure thanks to SSL

The client can then send the password in the channel.

Mandatory server authentication□

All messages▪

Overall scheme□
Mandatory messages in detail▪

 Notes Page 44

SSL version◊

32 bits timestamp◊

Random 28B quantity (nonce)◊

0: the server understands that the client wants to initiate a
new session

Otherwise it wants to create a new connection within the
session

Session ID◊

Key establishment (RSA, DH, Ephemeral DH, …)

cipher type

IV size

isExportable (b/w countries)

Cipher (RC4, DES, AES, …)

MAC size

MAC (MD5, SHA-1, …)

[Key material, other infos for the key generation]

List of algorithm triples:

Some tuples are standard
Like SSL_RSA_WITH_3DES_EDE_CBC_SHA

Cipher suite◊

Compression method◊

C → S client_helloa.

The server agrees on the algorithms◊

S → C server_hellob.

Round 11.

If it's not sent, a fatal alarm will be sent.◊

The client checks the validity of the server's certificate before
proceeding.

◊

S → C certificatea.

S → C server_hello_doneb.

Round 22.

Key exchange data
Depends on the chosen key exhange protocol with the hello
messages:

◊

C → S client_key_exchangea.

Round 33.

 Notes Page 45

RSA

DH

Anonymous or ephemeral DH

Fixed DH

messages:

Both sides can now generate their own keys for every
connection in this way.

The client encrypts a 48B random PMS by means of the server's
public key: after this message, both parties have the PMS.

◊

The client proves the server that he actually has all the correct
generated keys.
It can prove it by sending encrypted already-known stuff.

◊

C → S change_cipher_speca.

C → S client_finishedb.

Same thing of the change_cipher_specmessage.◊

S → C change_cipher_specc.

S → C server_finishedd.

Round 44.

Fragments, compresses, MACs and encrypts from high protocol stack's levels.▪

Scheme▪

The paylod is divided in 2^14B fragments○

The compression has to be lossless▪

The fragment is then compressed (default behaviour: no compression)○

Using the algorithm established during the handshake protocol▪

It computes the MAC○

Using the algorithm established during the handshake protocol▪

The compressed fragment and the MAC are then encrypted○

Application payload□

Fatal exceptions (the session is ended)

Unknown certificates◊

Other non-fatal exceptions (managed by someone else)

Alert payload□

TLS defines more alarms.

Payload types:▪

Then an header is added○

Record protocol○

 Notes Page 46

TLS defines more alarms.

Fresh master secret▪

Avoid replay attacks▪

Nonces in hello messages○

Avoid MIM▪

Certificates○

PMS and nonces must be impredictable○

SSL security•

Time of the day (guessable)□
Process ID (the range was restricted)□
Parent process ID (typically 0 or 1)□

It used the hash of:▪

All of those three quantities could have been guessed by an attacker.
Could be broken in 25 seconds.

▪

PMS PRNG in SSL 2○

Exploited a buffer-overflow vulnerability.▪

Heartbleed attack○

Vulnerabilites were found in some implementations•

In this case the malicious website sends a valid certificate.○

Normal users do not understand certificates.○

Phishing•

The credit card number is a public information○

For this reason also the CCV2 is needed during a payment check.○

When it is not needed, the italian law determine how's going to be penalized (the merchant)
because there's no techical way to determine how has payed.

○

Secure Electronic Transactions (SET)○

E-payments•

 Notes Page 47

08.ban-logi
c

•

A session key K is used for one communication session, to encrypt a large amount of
data just once.

▪

A long term key W is used for many runs of the key establishment protocol.
In each round, it ecnrypts a small amount of data.

▪

Summary○

It then requires (at least loosely) synchronized clocks.◊

Instead of it (because it not easy to achive), a nonce can be used.◊

 is a timestamp (necessary to avoid the replay attack).

 □
One-pass▪

 □

 is a fresh quantity not used before, randmoly generated by B.
It could be a counter or else.

 □

With challange-response▪

One part cannot always trust the other part's random generator for creating the
session key K.

□

The two established session keys are then XORed to each other: its property
assures that if at least one entity is random, then the result is also random (see
paper notes).

□

Both parties contribute to the session key▪

Three flavors○

Session key (K) establishment•

Analysis and design of cryptographic protocols
martedì 23 maggio 2017 11:10

 Notes Page 48

It can only prove that a protocol is correct.○

It can only prove ideal correctness: problems can still occur in implementation.○

Practical tool that allows to verify security protocols, by verifying design principle that should be followed during a desig n of a security
protocol.

•

Formalism•

Examples○

 P believes X P behaves as if X were true

 P sees X P is able to read and repeat X

 P once said X P believed X when he sent it
It is not known whether this is a replay

 P controls X P has jurisdiction over X
P is an authority on X and should be
trusted on this matter

 X is fresh X has not been sent in a message at any
time before the current run of the
protocol

K is a shared key b/w
P and Q

K can be known to someone
else than P and Q

X is a shared secret
b/w P and Q

K is only known to P and Q

K is P's public key is the private one

 X is a combined w/
the formula Y

Y is intended to be secret, its
presence proves the identity of
whoever utters .

•

In implementations could be a
simple concatenation

•

Assumed that this is encrypted, so
replay cannot be used

•

 or X has been encrypted
w/ K

Beliefs achieved in the present are stable for all the protocol duration▪

Beliefs of the past may not hold in the present.▪

Past and present (from the start of the protocol) epochs○

Parties are believed to behave correctly.▪

 ○

Preliminaries•

Message meaning (same result for those three postulates)1.

For shared keys:

For public keys:

For shared secrets:

Nonce verification2.

The result is: B believes A has sent X in this protocol execution instance.

The final result is given thanks to this property ().

Jurisdiction rule3.

Because P believes Q is an authority on X, so "P trusts Q"

Other postulates

Postulates (or this with the formalism introduced before)•

08.ban-logi
c

BANLogic2

The BAN logic
martedì 23 maggio 2017 11:08

 Notes Page 49

http://web.mit.edu/6.857/OldStuff/Fall97/lectures/lecture16.pdf
https://www.cs.utexas.edu/~byoung/cs361/lecture64.pdf
https://en.wikipedia.org/wiki/Burrows%E2%80%93Abadi%E2%80%93Needham_logic

Other postulates○

Idealizing a protocol•

When idealizing a protocol:○

Real protocol Idealized protocol Derived assertion

Key confirmation for A

Idealize protocol▪

Assumptions▪

Postulates to each protocol step and determine beliefs achieved by principals at each step▪

Draw conclusions▪

Steps○

Example○

first message meaning postulate

This is:

Protocol analysis•

A |= A <- K -> B▪

B |= A <- K -> B▪

Key autentication
There's no guarantee that Bob has actually the key K.

○

A |= B |= A <- K -> B
Alice has a proof that Bob believs that K is the shared key.
This is generally obtained by crypting a known quantity.

▪

B |= A |= A <- K -> B▪

Key confirmation○

A |= #(A <- K -> B)▪

B |= #(A <- K -> B)▪

Key freshness○

A wants to believe that is Bob's public key.

▪

Interaction with a certification authority○

Typical analysis objectives•

This protocol involves a TTP (T by the professor, S by Wikipedia)○

Each user share a long term secret b/w himself and the TTP (and)○

Objective: establish a session key between two users starting from long-term secrets with the TTP○

Idealization○

Real protocol

The real Needham-Schroeder protocol•

 Notes Page 50

https://en.wikipedia.org/wiki/Needham%E2%80%93Schroeder_protocol#The_symmetric_protocol

 in M5 distinguishes challenge to response, according to Principle 10:

Idealized protocol

M1

M2

The key freshness part is not explicitly derived from the real protocol.
It's implicit because T has replied using the same used by A in M1: that's why A
believes that M2 (and therefore the key) is fresh.

M3

M4

 key confirmation for A

M5

 key confirmation for B

Secrets assumptions○

▪

See why□
This is the only non-reasonable assumption.□
Let's suppose that an adversary is able to find (compromise) one session key .□

This means that the adversary is able to impersonate Alice whenever s/he likes.

It is sufficient that one session key is compromise to break the entire system (and not only the session).

The adversary is also able to record the related M3 message.□

Bob has to believes that K_ab is fresh, but he cannot prove it.□

▪

Freshness assumptions○

A |= T => (A <- K_ab -> B)▪

B |= T => (A <- K_ab -> B)▪

A |= T => #(A <- K_ab -> B)▪

Trust assumptions
Both believs that the TTP can generate shared key so they can use them.

○

A |= A <- K_ab -> B
Alice believes that K_ab is the shared key.

B |= A <- K_ab -> B

Key authentication□
Goals to achieve▪

Analysis○

 Notes Page 51

B |= A <- K_ab -> B
Bob believes that K_ab is the shared key.

A |= B |= A <- K_ab -> B

B |= A |= A <- K_ab -> B
Since the design of the protocol put M4 and M5, every party want to prove the other that s/he has the key.

Key confirmation□

Because M2 (directed to A) was encrypted by means of , shared key between A and T.

From the first postulate (1a)□

If something fresh is received, the user believes that the quantity belongs to the current execution of the protocol.

Alice can then be sure that that message is not a replay, because M2 contains generated by A in M1.

So becomes only thanks to the second postulate (nonce verification).◊

So Alice believes each thing separately◊

First goal (key authentication) for A achieved.

 ◊

Because Alice considers T an authority on establishing symmetric keys (jurisdiction rule, third postulate)

From the second postulate□

By analyzing message M2▪

Bob believes that

 comes from T (even if the message comes from Alice, that acts as a forwarding node)

Thanks to the first postulate (1a):
□

Because M3 it's encrypted by means of .

Another assumption about freshness has then to be added:

 Bob has to believe that the session

key is fresh.

B should have a proof that

 is fresh, and the message does not contain any fresh quantity.□

After that this assumption has been added,

 becomes

 □

First goal (key authentication) for B achieved.

We can now say that

 thanks to the jurisdiction rule (third postulate).□

By analyzing message M3▪

By applying the first postulate□

Once again, apparently Alice doesn't have any proof about the freshness of

 , but thanks to

 (in

M2) (third postulate: nonce verification), we can now say that:

□

Second goal (key confirmation) for A achieved.

(thanks to this property:).

 becomes an assumption, because if T says something, s/he believes it□

By analyzing message M4▪

Like in M4 (except that for this time is for B):

By analyzing message M5▪

 Notes Page 52

By splitting the message, the second goal (key confirmation) for B is achieved.◊

Thanks to the second postulate, Bob believes that the message is fresh, so also in this case "once said" becomes
"s/he believes" (like before)

Like in M4 (except that for this time is for B):

 □

Otway–Ree
s BAN logic

○

Real protocol○

In M1, encryption is not for secrey, but to indissolubly link togheter.◊

Same thing for M2 for Bob.◊

Since they don't carry any significant information, nonces could be sent in the clear.

This is what happens when nonces are sent in the clear.

 and are nonces, to prove the freshness of messages.□

 is a sort of nonce too: so why and are not enough?
 then disappears in M3 and M4 (more precisely, it's not encrypted, so what is it for then?)

 is an identifier of the current instance of the protocol.
It is created by the initiatior of the protocol.

□

▪

B forwards M1 to the TTP□

▪

The TTP generates the key , which is sent to B.□

▪

B then forwards the part containing to A.□

▪

Real protocol analysis○

The protocol is structured as a pair of remote procedure calls○

Shared secret and secret keys▪

The last one says that the TTP can establish the shared key b/w A and B (message M3).□
Freshness▪

Assumptions○

Otway-Rees protocol•

 Notes Page 53

https://en.wikipedia.org/wiki/Otway%E2%80%93Rees_protocol

Freshness

Set of assumption about trust.
A and B both believe that T is an authority about (they believe that T is able to generate good shared keys

▪

T has the capability to relay▪

In M3, T redirects M both to A and B.
T could change M to M' for B, claiming that A actually sent M' instead of M.
This assumption says that each party has to believe that T has an authority about saying who-sent-what.

□

The first message does not change▪

"messages in plain text have all been removed, because they have nothing to do with the analysis and authentication"

M is a transaction with B□
 is another name of A in M□

A says that:

Second message▪

The TTP believes that the first part of the message comes from Alice□
it's encrypted with

The TTP though doesn't have any proof about the freshness of that part of the message.□

T |= A |~ (Na, M)

T |= B |~ (Nb, M)

After M2, the TTP knows that:□

M then acts as a global name of the protocol instance

Na and Nb act like a local nome of the protocol instance.

The TTP then knows that A and B are both in the same instance of the protocol (if the triple M, A, and B match).
The TTP has no proof of these message's freshness:

Third message▪

First part: as the second part.□

The TTP says to B that is the session key, and also that "A once said M".
Bob believes that this part comes from the TTP (because Nb proves that this part is fresh (second postulate), so Nb
here acts like a nonce).

Second part□

Fourth message▪

B forwards the first part of M3 to A: nothing new to say.□

Idealized protocol○

Postulate 1a

□

Postulate 1a

□

After message M2▪

Postulate 1a□
After message M3▪

Analysis○

 Notes Page 54

Postulate 1a□

Postulate 2□

Postulate 3

□

Postulate 1□

The same as the previous one□
After message M4▪

If nonces had to guarantee freshness only, they could have been sent in the clear:▪

Messages recall

In this way, M1 and M3 (or M2 and M4) are not linked anymore□

In this example, C impersonates B

Suppose C performed an execution of the protocol (called M') with A

C stores the part of M2 which is encrypted by

Suppose C becomes an adversary that wants to act like Bob (in a future connection b/w A and B)

C intercepts M1 (so B won't receive it)

This is the attack that C can perform:

C can build M2 by using the quantity previously stored.◊

A doesn't know about the M -> M' change◊

B doesn't even receive the initiating message◊

The TTP generates M3 because it knows that it's talking to A and C (based on the encrypted messages it
received in M2)

◊

A believes to be in the M protocol execution, but C believes to be in the M' execution.

A thinks s/he's talking to B, while s/he's talking to C instead.

The protocol now has established a session b/w A and C instead of A and B.◊

This is subject to the MITM attack□

Countermeasurement▪

Otway-Rees modified○

 Notes Page 55

This is based on principle number 6. This rule should be always followed.
A message should always be self-contained, and always able to express itself.

□

It is easy to see that C cannot replay that stored quantity anymore.□

The handshake protocol wants to establish a session key b/w the client and the server○

Real protocol○

The client ecrypts the session key by means of the server's public key.□

B <| Kab

B then sees Kab, but it doesn't know who has sent the message.□

▪

The server (B) says it saw , and it sends a challange.□
 □
There's still nothing which links Kab with A (the following attack is then possible).
B doesn't know who sent the M1 message.
This is similar to the exam given July 6th, 2012.

□

▪

 is A's private key, it is a digital signature.

So A in this way responds to the challange while authenticating itself.
□

A appends its certificate to the message, and ecrypts the whole message with the sesion key.
The certificate is needed to verify the digital signature.

□

▪

Real protocol analysis○

Examining this protocol with the BAN logic, Bob has no proof that Alice knows Kab.▪

Sort of MITM▪

Scheme▪

Suppose that A initially wants to connect to M, so A sends M1'.1.
M sends a message to B, playing the role of the client, so it sends M1.2.
Now B replies with a challange (containing a nonce), according to the protocol, by sending M2.3.
M receives the nonce and encrypts it by means of Kam, replying to A with M2'.4.
A response to the challenge with the last SSL handshake protocol step, with M3'.5.

After M3, B thinks it's talking to A, with the right certificate Ca, with a nonce Nb and with the shared session key
Kmb.

M then decrypts M3' by means of Kam and re-encrypts it with Kmb, creating M3 to will be sent to B.6.

Attack○

SSL (old version)•

 Notes Page 56

onenote:Exams%20in%20class.one#July%206th,%202012§ion-id={F7F0DB8B-D467-4F6F-B120-82A16050929A}&page-id={73980A92-17F0-424B-B161-59434A530905}&end&base-path=https://d.docs.live.net/653d34e43499e34c/Documents/Security%20in%20networked%20computing%20systems
onenote:#Overall%20summary§ion-id={9DF0808A-3B56-495D-A4E7-2BF8420A1752}&page-id={8B23A890-14AD-4209-B15B-29363495661A}&object-id={6F80D6A9-3CB1-4B6B-94E0-D36087126BA9}&F&base-path=https://d.docs.live.net/653d34e43499e34c/Documents/Security%20in%20networked%20computing%20systems/Summary.one

Kmb.
This attack occours because there's nothing that links A and the key Kab.▪

By inserting the nonce in the digital signature.□
The client is required to digitally sign the nonce, the shared key and the entities.□

It creates a link b/w the session and the shared key.◊

M3' has in its digital signature .

M3 has in its digital signature .

Protocol modifications (look at the attack)◊

If the adversary selects , the previous MITM attack would still be possible (because M can
forward the digital signature as it is).

By inserting the entities IDs in the digital signature, there's no way to forge (forward) the digital
signature.

Why identifiers are needed◊

Signing the nonce just with the key is not sufficient.

That explains principle #7:

M3 was and then becomes

Solution▪

Comparison among real protocols•

Needham-Schroeder

Otway-Rees

SSL (old version)

It's very difficult to mantain synchronization in a distribuited system.
A replay attack can be performed in this error-window.

▪

Timestamp○

Three ways to build a nonce•

Predictable nonces

 Notes Page 57

A replay attack can be performed in this error-window.
The use of timestamps requires the assumption that authentication has already been assured.▪

Nonces may be predictable: timestamps can overcome this problem.▪

In this case the predictable quantity is □

 ◊

◊

The user A wants to know the current time

 ◊

 ◊

 ◊

Because A generated it.

Assumptions

Message meaning rule◊

Nonce verification rule◊

Jurisdiction rule◊

Results obtain after applying the logic

Anybody can act like Alice◊

A compromised server sends the wrong timestamp back◊

Attacks

◊

◊

Solution according to Principle 8 (protecting nonce)

Time server example□

Synchronization▪

Server clock set back: authenticators can be reused

Server clock set ahead: it's possible to generate post-dated authenticators

Kerberos example□

Assumption: the upper bound has to be very large.▪

It is predictable.▪

Counter○

Assumption: it should be impossible to generate the same number twice.▪

It's not predictable.▪

Random number generator○

Client: mobile phone•
Server: the final authentication server (not all the intermediate antennas)•

The client sends its ID▪

○

The server mantains a database <ID, symmetric key contained in the user SIM>▪

The server generates a random challange and sends it to the client▪

○

Real protocol•

GSM protocol

 Notes Page 58

The server generates a random challange and sends it to the client▪

A challenge □
The session key K□

The servere calculates : in this way it generates▪

The client sends back the response (sigma)▪

○

Suffers from the chosen-plaintext attack•

Idealized messages description•

Assumptions•

Encrypted nonces•

The usage of nonces and encryptions must be justified•

If nonces had to guarantee freshness only, they could have been sent in the clear.□
Otway-Rees is then modified as following:□

Messages recall

M1 and M3 (or M2 and M4) are not linked anymore□

Countermeasurement based on Principle 6□

Nonces and just prove messages freshness.▪

In M1, encryption is not for secrey, but to indissolubly link togheter.▪

Example: nonces and encryption in Otway-Rees○

Principles

 Notes Page 59

onenote:#The%20BAN%20logic§ion-id={9DF0808A-3B56-495D-A4E7-2BF8420A1752}&page-id={7A85DDCA-91BD-4304-8C8B-E71A39800092}&object-id={11287E68-8677-427E-94DE-B64BDBA7EA11}&A9&base-path=https://d.docs.live.net/653d34e43499e34c/Documents/Security%20in%20networked%20computing%20systems/Notes.one

In M1, encryption is not for secrey, but to indissolubly link togheter.

Countermeasure to replays or quantity forwarding to avoid impersonation•

Example: modified Otway-Rees○

Example: SSL (old version) with ○

If the adversary selects , the MITM attack would still be possible (because M can forward the digital signature as it
is).

▪

By inserting the entities IDs in the digital signature, there's no way to forge (forward) the digital signature.▪

Signing encrypted data•

Example: X.509○

A could simply include
in its digital signature, without knowing , because it is encrypted by means of .▪

Example: SSL (old version)○

The entity (A) first signs the message and then encrypts it.▪

Predictable nonces should be protected (encrypted)•

 ▪

▪

In time servers, instead of:○

▪

▪

This could be done:

Timestamps synchronization•

Example: compromised Kerberos server's clock brings some problems.○

Self-contained messages•

 Notes Page 60

Self-contained messages•

Example: in Needham-Schroeder, the response has , just to distinguish this message from the challenge.○

 Notes Page 61

A and B have already their pair of public and private keys○

A generates a symmetric secret K randomly and sends it to B b encrypting it with the public
key of the latter.

○

At the end of the session, both parties have to delete the shared secret session key.○

Intro•

Nothing to do other than revoking B's keys and warning A.▪

Every future session involving B is compromised.○

Perfect forward secrecy is about this.▪

Also past sessions are compromised if the adversary was able to sniff the initial ciphertext
containing the shared key.
If B's private key is compromised, the adversary is then able to recover K from the ciphertext
and hence to read all past sessions.

○

Problems with the compromization of a long-term secret (such as B's private key)•

Summary: it just uses DH for every session to establish a different session key K everytime.
Once the DH random numbers a and b are deleted, nobody is able to decrypt past
communications.

○

 ▪

 ▪

Assumptions○

The long-term secret in this case is the shared key , like IPsec (a pre-shared key is
installed manually on router pairs in order to let them calculate other session keys).
A and B want to establish a session key K using a long-term key .

○

Perfect forward secrecy in this case wants to assure that previous communications
cannot be read if the shared key is compromised

▪

It's used to avoid MITM attacks□
There's no need to encrypt public keys□

A encrypts the public key

with the shared key to guarantee authenticity▪

Pre-Shared Key Ephemeral Diffie-Hellman (PSK-DHE)•

Perfect forward secrecy
martedì 23 maggio 2017 11:07

 Notes Page 62

There's no need to encrypt public keys□
A and B, according to DH, are able to generate the K▪

a and b are generated on-the-fly just once during the session□
Secrets a and b (and the corresponding public quantities) can be deleted▪

The adversary has still to solve the discrete-logarithm problem▪

Past sessions are protected▪

Suppose that has been compromised and that an adversary has sniffed all messages○

Summary○

Generate two large numbers.□
Several exponentiations.□

The DH protocol has to be performed for each session, and it is computationally
heavy.

▪

Costs○

Protocol○

A sends a random quantity R to B.i.

The ephemeral B's public key is signed by B.
B also appends its certificates so A can really trust B.
(it is shown as)
The random quantity is attached to prove freshness.

□
B has to generate a public and private key pair on-the-flyii.

In order to decrypt previous sessions, the adversary has to calculate K, but in order to
do this it has to have B's private key.

▪

B's private key gets deleted as soon as possible though, as defined by the protocol.

B's public key compromised:○

Ephemeral RSA (RSAE)•

 Notes Page 63

Kerberos is a computer network authentication protocol that works on the basis of 'tickets' to
allow nodes communicating over a non-secure network to prove their identity to one another in a secure manner

•

Based on the Needham-Schroeder protocol•
Kerberos (or KDC) is a TTP (AS + its DB + TGS) b/w clients and servers•

Mutual authentication b/w client and server○

Key establishment b/w client and server○

Prove that the client is active and vice versa○

Provides•

Entities•

Shares with the AS▪

Shares with B▪

A: client (workstation or user)○

Shares with the AS▪

Shares with A▪

B: server○

AS: authentication server, the TTP○

More workstations (PCs) connected to a DCE (Distributed Computer Environment)○

The DCE is connected to an AS (Authentication Server) and to a FS (File Server)○

A PC had to authenticate itselft to the AS○

That's why those clients were called thin clients, becuase they didn't store any data▪

Every workstation then had its own home directory on the FS, and PCs cached their own directory○

Past architecture on which Kerberos was based•

This allows users to login to different computers.▪

Those keys are related to users, not to machines.○

Keys are functions of passwords: A, with its password , can generate .▪

 ○

Every party has a shared key with each other entity.•

Secrecy▪

Authenticity▪

Security○

If the AS is down, no user is able to work.▪

Replication, uninterruptable power systems, …▪

Availability○

A user just has to type his/her password▪

Transparency○

Scalability○

Requirements•

Basic idea•

Kerberos
martedì 23 maggio 2017 11:04

 Notes Page 64

Basic idea•

Messages•

 is a timestamp, the login time□
 is the session time length (ticket validity interval, usually a couple of hours)□
 is a nonce□
 is A's workstation address□

 ▪

The AS creates the session key □

They are for key authentication.

These two quantities are called tickets, and .□

▪

M1 and M2 are used by A to login to the AS (to get tickets), exchanged just once during one session (L
validity).

○

This is kind of a certificate.

WS is included in the first part to specify that is valid when A is using the machine
identified by WS.

In the first part, A forwards to B in order to inform the latter about the session key □

" " is the known quantity that confirms the key◊

This is the key confirmation message for B according to the BAN logic

Encrypted by means of

It contains another timestamp, , the time in which A wants to use B's service

 is then used just for authentication, meanwhile the subkeys are used to
confidentiality.

All the future session communication (connections?) can be encrypted with different

subkeys, instead of .

◊

Subkeys can be computed from , like SSL does.◊

 can be used for the actual fulfillment of the service

The second part of the message is called the authenticator□

▪

M3 and M4 are exhanged everytime that A wants to use B's service (using the tickets).○

Messages detailed analysis•

 Notes Page 65

Key confirmation for A□
 should is known quantity that confirms the key.□

▪

Starting from pre-shared keys▪

 and derive from users' password.□
 , where the function could be anything (an hash, for example).□

The TTP generates the shared key between A and B▪

Both A and B believes that the TTP is an authority on shared keys▪

When B receives the first part of M3, it thinks that it comes from the AS.
Has B any proof that that message is fresh?
The timestamp was generated by A (it was a problem of the Needham-Schroeder protocol).

▪

This also applies for the second part of M3: was generated by A.
An important assumption is:

For A, it's easy to believe that t and (omitted on the slides) are fresh quantities, because
they're generated from her.

□

Has an old key and its related ticket◊

Succeeds in turning back the clock◊

If an adversary:

Then it can reuse the key
Solution: using certificates in M1 (so there won't be the need of shared secrets based on
reusable passwords)

Problem:□

In practice, it means that Kerberos requires synchronized clocks (between A and B).

Assumptions○

Analysis○

Ban logic analysis•

 Notes Page 66

Scheme○

Whenever L expires, the user A has to re-type her password.○

There's no specific range window: by increasing its size, a replay attack is more likely to occour.▪

By replaying the authenticator, B accetps the subkeya again, so all the previous messages are re-
usable.

▪

By making it too short, it may happen very frequently that the authenticator is no longer considered
fresh.
This affects usability, causing a Denial of Service.

▪

Its typical length (the authenticator validity) it's around a few minutes.▪

 is not instant: M3 is received by B after a certain delay○

Athenticators and tickets lifetime•

Requires synchronized clocks○

 and derive from users' password, so they are as secure as the latter.○

Better have a stateless Authentication Server.▪

The AS should be highly available: server replication.○

Summary•

Kerberos was developed to, for example, allow access to shared File Servers.
For other services like mail, all those messages have to be exhanged every time.

○

Usability problem: When the ticket expires, the user has to re-type his/her password.○

This is not considered secure enough because the password is a single point of failure.□

A user's WS (WorkStation) could store (cache) the password for the whole session in order to avoid
repeating M1 and M2.

▪

Service implemented on the AS.□
In order to interact with this service, a ticket TGT (Ticket Granting Ticket) is needed.□
The TGS issues tickets for other services.□

Ticket Granting Service (TGS)▪

Solutions○

Complete architecture•

 Notes Page 67

The AS establishes TK (Ticketing Key) as the shared key between Alice and the TGS.◊

Messages◊

Alice interacts with the AS (M1 and M2) and receives a TGT, a ticket (lasts hours, whole
session) to use with the TGS

1.

The Service Ticket Request part

"Mainly" because the TGS will respond with an M2 message
containing 2 tickets.

It's mainly an M1 message –

With this message, the client authenticate itself and presents the
TGT that will allow him to interact with the TGS

Usually authenticators also have a subkey in it, but in this case is
useless since the client doesn't have to establish a key for
encrypting future communications with the TGS

t' is the service starting time

L' is the desired validity interval

M3 message

 –

Composition

Scheme

t' is the service starting time•
L' is the desired validity interval•

 i)

The TGS can then release service tickets (like) to interact with other

 ii)

By means of the TGT, the user can interact with the TGS using an authenticator.2.

 Notes Page 68

The TGS can then release service tickets (like) to interact with other
services (in this case the server Bob).

This is an M2 message.

The interaction with the TGS is the same as the interaction of any other service.◊

Alice uses (the Service Ticket for Bob) to interact with the server Bob.a.

The TGT can still be compromised, but the TGT does not last forever (a ticket has its
own validity L').

◊

This introduces a limit of the amount of time during which an adversary can
impersonificate a user.

Improvement: the user has to type his/her password just once.
The TGT is stored in the user's WS and his/her password can be then deleted.
Whenever a user has to interact with another service, s/he can use the TGT.

□

To inform B about the established session key ◊

To perform key confirmation to B thanks to the authenticator (encrypts "A", a
known data, with the key)

◊

M3

To let B confirm the established session key ◊

M4

M3 and M4 have to be exchanged with the service□

Those problems exist because Kerberos was developed during the 80s, where wireless communication was
not spread like nowdays.

○

Hence eavesdropping was not considered as a problem.

The AS, once it receives M1, doesn't have any clue if A is really A.▪

Offline password attack: an adversary may send M1 on Alice behalf.
The AS replies with M2, so the adversary can use A's ticket to launch a password attack, by guessing
password and verifying them by decrypting the ticket.

▪

The problem is that the AS replies with M2 before checking for the user's password▪

The AS, once it has received M1, has no clue if the message was really originated by Alice.□
By replying with M2 (TICKET_GRANT), it can be stored in order to perform an offline password
attack.

□

Kerberos does not authenticate users w.r.t. the AS1.

Problems•

 Notes Page 69

attack.
Solution: M1 has a new format▪

In this way, the user has to type his/her password at the beginning (in order to generate
Ka)

It is not in the clear anymore: it includes a part encrypted with .□

The adversary could still perform an online attack, but it's more difficult.◊

It could be discouraged by increasing the waiting interval once a user fails to login.

If the authenticity check fails, the AS doesn't reply with M2, so the adversary is not able to
perform an offline attack.

Otherwise, M2 it's enough for the user to say that s/he's been logged in succesfully.

In this way the AS can check if the M1 message was generated by Alice or not.□

The Mail Server (MS) has to interact with the File Server (FS) to save emails (typically on files).▪

Of course this job of interacting with the FS is delegated to the MS, so the user doesn't have do to this.
The MS has to be able to write in different directories on the FS, one for each user.▪

What's the problem○

The MS is now a single point of failure.□
Root privileges can be given to the MS (like in Sendmail).▪

Proxy tickets□

The user A exchange M1 and M2 with the AS, requiring a TGT with a particular bit set to 1 a.

Solutions (proxy ticket and forwardable TGTs) based on the principle of minimum privilege: security
policy that basically says that privileges have to be as strict as possible everytime to avoid the previous
problem.

▪

Solutions○

Mailing service delegation•

 Notes Page 70

The user A exchange M1 and M2 with the AS, requiring a TGT with a particular bit set to 1
(PROXIABLE_TGT := 1).
Let's call it PTGT (Proxiable TGT).

a.

(In M2) One ticket is encrypted with MS' key, and the other is encrypted with
the key shared between A and the TGS (which is TK).

The ticket for the server also contains the address of the user's current
workstation (to avoid replay attacks).

It contains a key that allows A to talk with the MS

 … …

 … …

◊

A asks the TGS for a service ticket to talk with MS ().b.

This ticket will be used by MS to the FS, delegated by the user A.◊

A normal service ticket would include .

If it would contain , the FS would only accept service requests
coming from A, and it would refuse any connection from the FS.

–

The proxy ticket instead includes .

When the FS is gonna receive this proxy ticket, it will allow the MS to access its
file system.

The user A then also has to send the session key
,

encrypted it with the shared key b/w A and the MS, , which is

included in the service ticket.

–

In order to let the MS talk to the FS, it needs .

The only one that can send this key to the MS is the user A.

Since it is a ticket to talk with the FS, this ticket will contain the key to talk with the
FS:

 … …

 … …

◊

There's an extra step: the proxy tickey for the FS.
A also asks the TGS for a special service ticket (proxy ticket) which will allow the MS to
interact with the FS.
A will forward this ticket to the MS: the latter will then use this special proxy ticket to
access the FS file system.

c.

This protocol can be made even more difficult by assigning to the MS only particular
privileges (read only, …).

◊

So the MS can abused only during this time interval.

The delegation lasts for the validity ticket L.◊

Properties

A client has to have the knowledge on how this protocol is implemented◊

Any change in implementation affects users behaviour.◊

Drawback: at login, the user A has to ask all tickets (and proxies tickets) s/he needs.
The client should then know in advance what to ask.
This could be a (software engineering) problem because:

This solves the previous software engineering problem in the proxy tickets Kerberos
version.

◊

It is then now more dangeourus from a security point of view, because now
compromising the MS could bring more damage than before.

◊

In the proxy tickets solution, the ticket allowed delegation: now, A asks for a forwardable
TGT in order to sent it to the MS, so the latter can ask all the service tickets it needs.

Scheme

Forwardable TGT□

 Notes Page 71

TK: shared key b/w A and the TGS•
Tk': shared key b/w the MS and the TGS•

Key summary

Comparison between Proxy Tickets and Forwardable TGTs□

Proxy ticket Forwardable ticket

Pro The user controls which rights to
delegate the server.
The user requests the proxy ticket for the FS.

The server determines which ticket it needs.
The user does nothing.

Con The user needs to know which tickets
will be necessary.
The user requests the proxy ticket for the FS.

A compromised server can abuse of all rights.
The server requests all the tickets it needs.

Has a maximum lifetime▪

Specifies a maximum number of access rights▪

Limitations: a ticket○

Realms are administrative domains.▪

Kerberos always authenticates users in its realm.▪

Referral TGTs with inter-realm keys▪

Realms and referral tickets○

 Notes Page 72

Referral TGTs with inter-realm keys▪

Functioning▪

Realms hierarchy□

A user only requests tickets.

Workstation: damages are limited to the WS and its users□

Good practice: distribuite a server

A server

Server: damages are extended to all server's users□

It stores all the users' secret keys (for user machines and services) in its database

It generates shared keys between users

Kerberos (or KDC): system completely broken□

What happens if something gets compromised▪

Server clock set back: authenticators can be reused○

Server clock set ahead: it's possible to generate post-dated authenticators○

Clock synchronization attacks•

 Notes Page 73

